

PowerBuilding und DataCenter Convention Frankfurt/Main, am 07. Mai 2015

1. Verlässlichkeitsanalyse

- Fragestellungen aus der Praxis
- Richtlinien und Normen

Praxisbeispiel

- Aufgabenstellung und Dienstleistungsprozess InfraOpt®
- Praktische Interpretation: Zuverlässigkeit, Verfügbarkeit, Fehlertoleranz

3. Verlässlichkeitsanalyse mittels InfraOpt®

- Variantenanalyse drei verschiedener Infrastrukturdesigns
- Ergebnisvergleich und Bewertung der Varianten
- Zuverlässigkeit und Verfügbarkeit als Zeitfunktion

4. Anwendungsbereiche der Verlässlichkeitsanalyse

1.1 Verlässlichkeitsanalyse im Rechenzentrum Einige Fragestellungen aus der Praxis

- Welche Verfügbarkeit und welche Zuverlässigkeit gewährleistet meine Infrastruktur zum Stand?
- Sind meine Wartungs- und Servicepläne (SLA) hinreichend?
- Wann, in welche Teilsysteme und wieviel muss ich investieren?
- Welche Verbesserung wird in Folge der Investition erreicht?
- Kann ich mich auf das RZ während einer Umbaumaßnahme verlassen?
- Sollte ich neu bauen oder eine Containerlösung erwägen?
- Wie ist fortlaufende Zuverlässigkeitsbewertung im Rahmen eines Informations-Managementsystems nach DIN ISO 27000 ff. zu realisieren?
- Wie begründe ich die Notwendigkeit von Investitionen?
- Was schreiben die Richtlinien und Normen?

1.2 Richtlinien und Normen Tier Klassifikation - Uptime Institute

Uptime Institute	Tier I	Tier II	Tier III	Tier IV
Single Points-of Failure	Many+ Human Error	Many+ Human Error	Some+ Human Error	Fire, EPO+Some Human Error
Representative Plan- ned Maintenance Shut Downs	2 Annual Events at 12 Hours Each	2 Events Over 2 Years at 12 Hours Each	None Required	None Required
Representative Site Failures	6 failures Over 5 Years	1 Failure Every Year	1 Failure Every 2.5 Years	1 Failure Every 5 Years
Annual Site-Caused End-User Downtime (based on field data)	28.8 hours	22.0 hours	1.6 hours	0.8 hours (0.4 hours)
Resulting End-User 99.67 % Availability on Site- Caused Downtime		99.75 %	99.98 %	99.99 % (99.995 %)
First Deployed	1965	1970	1985	1995

Quelle (Auszug): Uptime Institute, 2008, White Paper, "Tier Classifications Define Site Infrastructure Performance", Page 14

1.3 Richtlinien und Normen BSI Verfügbarkeitsklassen, BITKOM Kategorien

BSI	VI	〈 0	VK 1		VK 2	VK 3	VK 4	4	VK 5
Ausfallzeit /Jahr	Ca	a. 2-3 Wo.	< 90 S	td.	< 9 Std.	< 1 Std.	ca.	5 min.	-
Anforderung an Verfügbarkeit	Ke	eine	norma	al	hoch	sehr hoch	höc	hste	Desaster -tolerant
Verfügbarkeit	ca	a. 95 %	> 98,9	7 %	> 99,90 %	> 99,99 %	> 99	,999 %	(100 %)
BITKOM		Kategorie	e A	Kate	egorie B	Kategorie	С	Kateg	orie D
Zul. Ausfallzeit /Ja	ahr	12 h		1 h		10 min.		< 1 mir	1
Verteilung		USV/Norm empfohler		Red A un	undanz Id B	Redundan: A und B	<u>7</u>	Redun A und	
USV		mind. 10 m	nin	mino N+1	d. 10 min	mind. 10 m 2 N	in	mind. 7 2 (N+1)	
Notstrom				_	uf 15 s Brennstoff	Anlauf 15 s 72 h Brennsto		Anlauf 15 s 72 h Betankung	
Klimatisierung		Redundar bzw. notw			lundanz Redundanz wendig notwendig			Komplette Redundanz	
→ Verfügbarkeit		99,86 %	99,9		9 %	99,998 %		99,9998 %	
Ouelle (Auszug): BITKOM e. V. Betriebssicheres R7. Leitfaden 2013									

Quelle (Auszug): BITKOM e. V., Betriebssicheres RZ, Leitfaden 2013

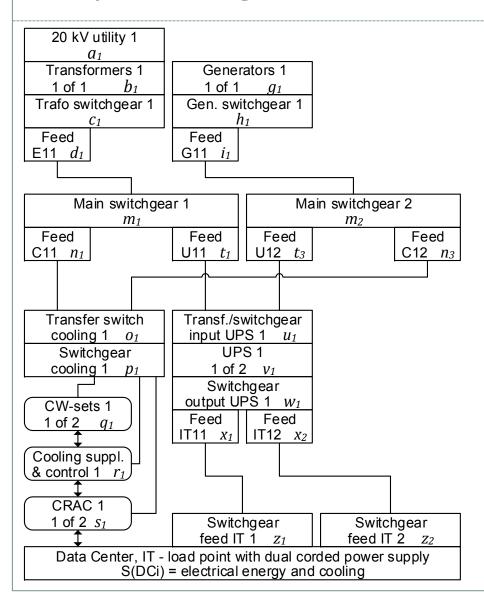
ibmu.de®

1.4 Richtlinien und Normen DIN EN 50600 ff.

Verfügbarkeits- Klasse	VK 1	VK 2	VK 3	VK 4	VK 4 erweitert
Verfügbarkeit	niedrig	mittel	hoch	sehr hoch	
DIN EN 50600-2-2 Stromversorgung	keine Redundanz	Komponenten Redundanz	Instandsetzung im Ifd. Betrieb		toleranz erschalter)
Versorgungs- pfade	Einer N	Einer N+1	Mehrere 2N	Mehrere 2N	
Notstrom (NEA)	k. A.	k. A.	k. A.	k. A.	
DIN EN 50600-2-3 Überwachung der Umgebung	-	keine Aus- fallsicherheit	Komponenten Redundanz	Instandsetzung im Iaufenden Betrieb	
Versorgungs- pfade	-	Einer N	Einer N+1	Einer N+1	Mehrere 2N

Quelle (Auszug): DIN EN 50600-1 2013, DIN EN 50600-2-2 2014, DIN EN 50600-2-3

1.5 InfraOpt® Forschungs- und Entwicklungsvorhaben



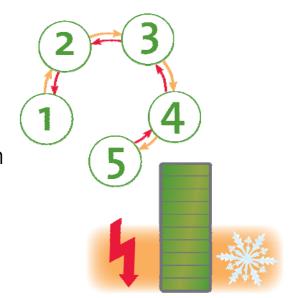
- August 2009 Dezember 2011: FuE-Vorhaben InfraOpt®
 - FuE-Vorhaben für KMU, Investitionsbank des Landes Brandenburg
 - Externe Partner: Technische Universität Berlin, Prof. Strunz; Universität Potsdam, Prof. Schaub; Associate Prof. C. M. Welzig (USA)
 - Ergebnis: Dienstleistungsprozess basierend auf Simulationssoftware InfraOpt64
- Wissenschaftliche Veröffentlichungen
 - 2012 IEEE PES ISG, "Integrated Reliability Modeling for Data Center Infrastructures: A Case Study"
 - **2**015 ...
- Juni 2014 Mai 2016: FuE-Vorhaben InfraOpt® REALTIME
 - FuE-Vorhaben für KMU, Investitionsbank des Landes Brandenburg
 - Externe Partner: Technische Universität Berlin, Prof. Strunz; Associate Prof. C. M. Welzig (USA)

2.1 Praxisbeispiel – Aufgabenstellung Analyse und Vergleich verschiedener RZ-Designvarianten

Vergleiche Varianten N+1 / 2N:

- N_E+1 Elektroenergieversorgung
 N_C+1 Kälteversorgung
- 2) 2N_E Elektroenergieversorgung N_C+1 Kälteversorgung
- 3) N_E+1 Elektroenergieversorgung 2N_C Kälteversorgung

Verlässlichkeitsanalyse:


- Zuverlässigkeit R(t)
- Inhärente Verfügbarkeit A_i
- Operationale Verfügbarkeit A_o
- 1- und 2-Fehlertoleranz

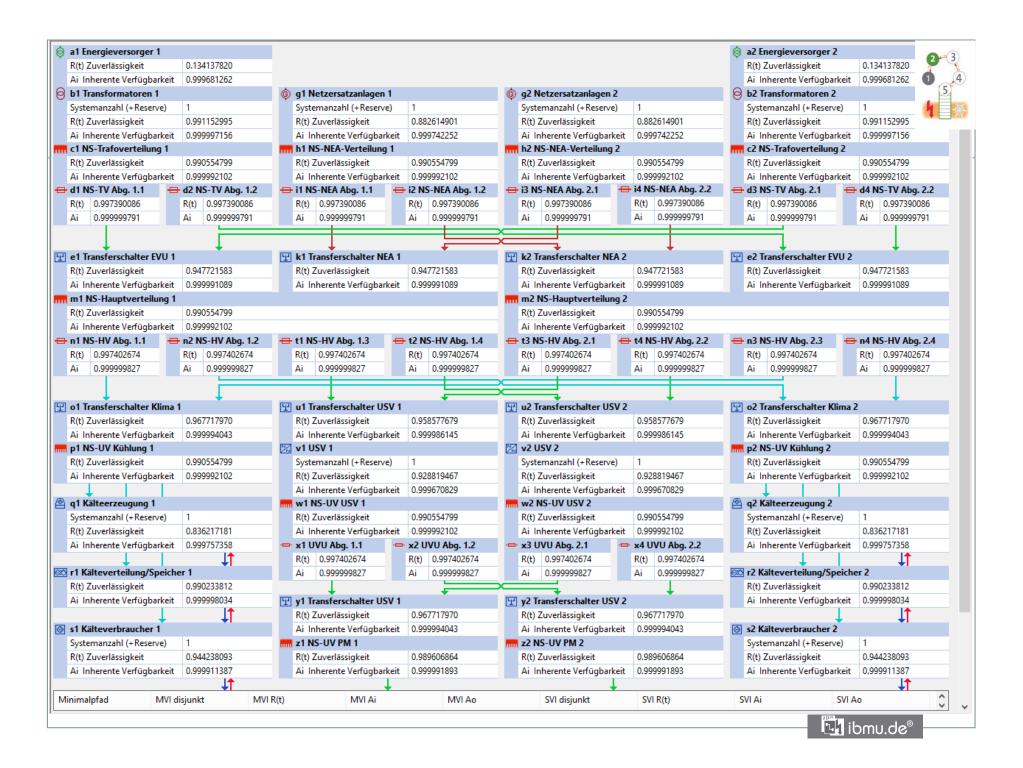
2.2 Verlässlichkeitsanalyse mittels InfraOpt® Praxisbewährter Dienstleistungsprozess

Fünf Schritte zur Optimierungsvariante:

- 1. Überführung der Infrastruktur in ein integrales Zuverlässigkeitsschema
- 2. **Modellierung** der RZ-Infrastruktur in InfraOpt®
- 3. Aufbereitung der Zuverlässigkeitsdaten
- 4. Berechnung Zuverlässigkeit und Verfügbarkeiten
- 5. 1- und 2-Fehlersimulation über alle Teilsysteme

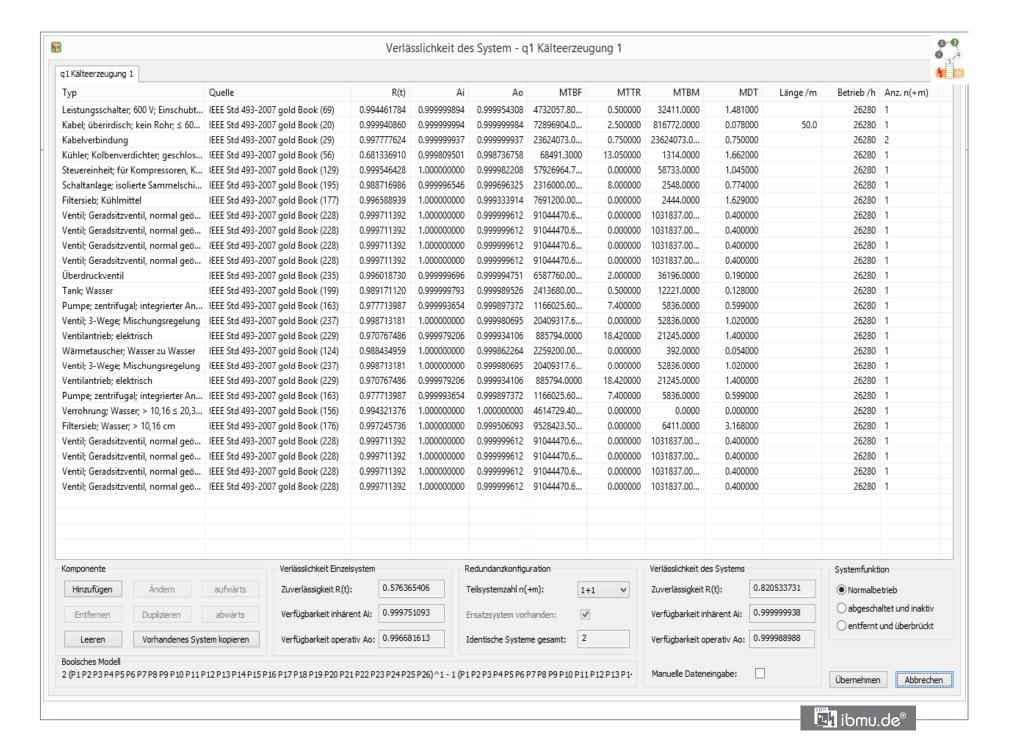

Ziel des Optimierungsprozesses:

Maximierung Verlässlichkeit - Minimierung Lebenszykluskosten



EW 1 Bsp. 3.3.3 > 5 kV, < 600 A 46, 2x29 | MS-Kabel > 5 kV, < BOD A 500 m MS-Schaltanlage > 5 kY, < BOD A b1 n=1 MS-Trafoschalter > 5 kV, < BOD A MS-Kabel 46, 2x29 > 5 kV, < 600 A 50 m Trafo 1 < 3 MVA 35, 2x29 < 600 Y 20 m n+m | Leistungsschalter < 600 Y, > 600 A | Trafoverteilung 1 < 600 Y, > 600 A Leistungsschalter Leistungsschalter < 600 Y, > 600 A < 600 Y, > 600 A 35, 2x29 NS-Kabel 35, 2x29 NS-Kabel < 600 V, > 600 A < 600 Y, > 600 A 50 m 50 m

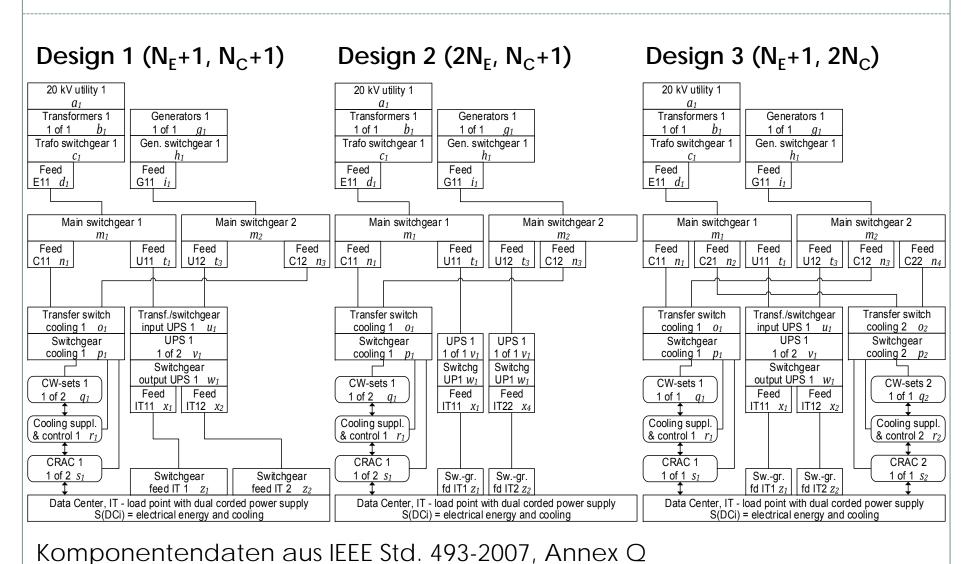
2.3 Integrales RZ-Infrastruktur-Modell Elektroenergie- und Kälteversorgung



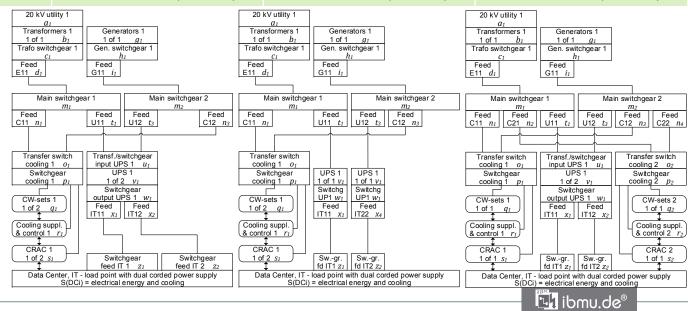
2.4 Aufbereitung der Zuverlässigkeitsdaten Teilsysteme und Datenquellen

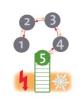
- Aufbereiten aller Teilsysteme des Zuverlässigkeitsmodells in InfraOpt®
 - Ein Teilsystem kann beliebig viele Komponenten enthalten
 - Je Komponente kann das Alter festgelegt werden
 - Redundante Komponenten sind möglich
 - Komponentenattribute werden unterstützt (z. B. Kabellänge)
 - Beliebig redundante Teilsysteme sind möglich
- **Einpflege** und **Zuordnung** von **Zuverlässigkeitsdaten** aus folgenden Ouellen:
 - statistische Erhebungen des Rechenzentrums-Betreibers
 - Zuverlässigkeitsdaten von Herstellern
 - Reaktionszeiten von Zulieferern und Dienstleistern
 - Zuverlässigkeitsdaten aus IEEE Std. 493-2007

2.5 Verlässlichkeitsanalyse mittels InfraOpt® Praktische Interpretation der berechneten Metriken

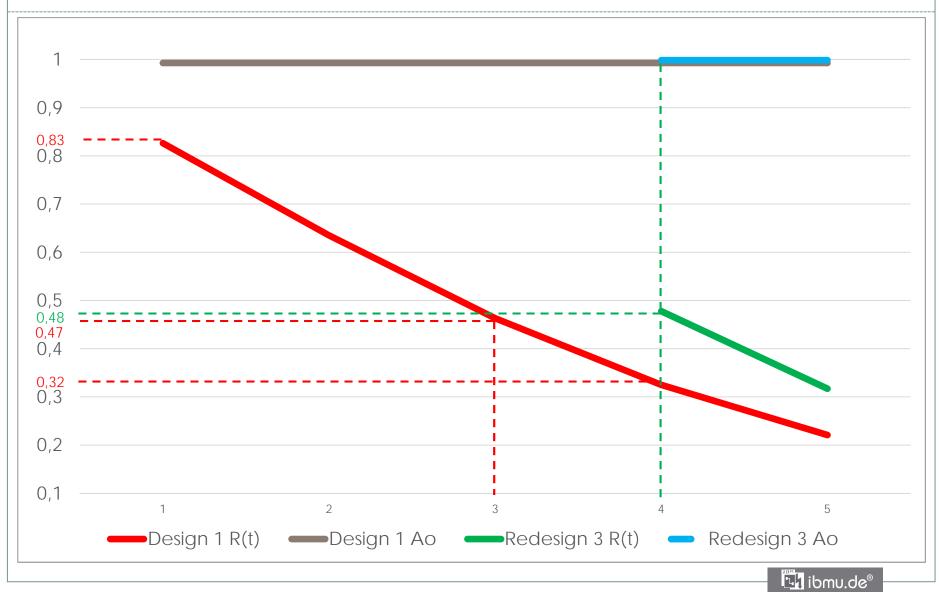

- **Zuverlässigkeit** (Reliability): $R(t) = e^{-1/MTBF * t}$ als Wahrscheinlichkeitsmaß
 - Strukturdesign (Tier, Kategorie), Redundanzen (x*N, y*M)
 - Komponenten (MTBF), Betriebsdauer etc.
- **Wann** und in **welche Teilsysteme** ist zu **investieren** (Alterung)
- Inhärente Verfügbarkeit: A_i = MTBF / (MTBF + MTTR)
 - MTBF: Mittlere Zeit zwischen zwei Fehlern
 - MTTR: Mittlere Zeit zur Reparatur
- Welche Servicelevel sind notwendig, was ist zu bevorraten
- Operationale Verfügbarkeit: A_o = MTBM / (MTBM + MDT)
 - MTBM: Mittlere Zeit zwischen zwei Instandsetzungen
 - MDT: Mittlere Zeit der Nichtverfügbarkeit
- Funktionieren die Managementsysteme (Qualifikation, Sicherheit)
- Simulation 1- und 2-Fehlerkombinationen aller Teilsysteme, identifizieren der Single Points of Failure (SPoF) und Double Points of Failure (DPoF)
- Vorhersage der Reaktion auf geplante bzw. nicht geplante Ereignissen

3.1 Verlässlichkeitsanalyse mittels InfraOpt® Variantenvergleich verschiedener Redundanzkonzepte


ibmu.de


3.2 Verlässlichkeitsanalyse mittels InfraOpt® Metriken und Einteilungen zum Bewerten von Infrastrukturen

Variantenvergleich	Design 1	Design 2	Design 3	
Anzahl Teilsysteme N	25 (N_E+1, N_C+1)	$26 (2N_{E}, N_{C}+1)$	$32 (N_E + 1, 2N_C)$	
Zuverlässigkeit R (1Jahr)	0,82629	0,83885	0,83733	
Inhär. Verfügbarkeit A i	0,99996	0,99998	0,99998	
Oper. Verfügbarkeit A _o	0,99261	0,99392	0,99854	
Single Points of Failure	5/25 (20 %)	3/26 (12 %)	2 /32 (6 %)	
Double Points of Failure	146/300 (49 %)	156/325 (48 %)	120 /496 (24 %)	


3.3 Verlässlichkeitsanalyse mittels InfraOpt® Metriken und Einteilungen zum Bewerten von Infrastrukturen

Einteilung nach A _o	99,261 %	99,392 %	99,854 %	
Uptime Institute	Schlechter Tier 1	Schlechter Tier 1	Tier 3	
BSI Verfügbarkeitsklasse	Schlechter VK 0	Schlechter VK 0	knapp VK 2	
BITKOM Kategorie	Schlechter als A	Schlechter als A	Kategorie A	
DIN EN 50600 ff.	k. A.	k. A.	k. A.	
Einteilung nach DIN EN 50600 ff. Redundanz	VK 2	VK 3	VK 2	
Feed C11 n ₁ Transfer cooling Switch cooling CW-sets 1 of 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	mers 1 b_1 Generators 1 b_1 1 of 1 a_1 Gen. switchgear 1 b_1 Gen. switchgear 1 b_1 Feed G11 b_1 Gen. switchgear 1 b_1 Feed b_1 Gen. switchgear 1 b_1 Feed b_1 Gen. switchgear 1 b_1 Gen. switchgear 1 b_1 Gen. switchgear 1 b_1 Gen. switchgear 2 b_1 Gen. switchgear 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

3.4 Zuverlässigkeit und Operationale Verfügbarkeit Design 1: R(1...5 Jahre) Design 3: R(4...5 Jahre)

4 InfraOpt® – für Planer, Betreiber, Co-Locator, Entscheider Methodik zur Optimierung von RZ-Infrastrukturen mittels Metriken

Vorhersage der Reaktion der Rechenzentrums-Infrastruktur auf **geplante** bzw. **nicht geplante Ereignissen -** auf der Grundlage numerischer **Metriken**.

- Vergleich verschiedener Tier-Designs / Kategorien / Verfügbarkeitsklassen
- Vergleich beliebiger Redundanzanordnungen (2N, N+1, xN+yM)
- Vergleich von Komponenten mit unterschiedlichen MTBF bzw. MTTR
- Unterstützung beim Design / Redesign:
 - Identifizieren von Schwachstellen (strukturell, Komponenten)
 - Investitionsbegründung gegenüber dem Management auf der Grundlage von Metriken
 - Bestimmung des "herabgesetzten Ausfallsicherungsgrades" nach DIN EN 50600-2-2 in Schalt- bzw. Wartungssituationen
 - Validierung von Service-Level-Agreements
 - Optimieren von Wartungs- und Serviceplänen
- Fortlaufende Zuverlässigkeitsbewertung eines Informations-Managementsystems nach DIN ISO 27000 ff.

